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Thanks to the recent progress in high-performance computational environ-
ments, the range of applications of computational metallurgy is expanding
rapidly. In this paper, cutting-edge simulations of solidification from atomic to
microstructural levels performed on a graphics processing unit (GPU) archi-
tecture are introduced with a brief introduction to advances in computational
studies on solidification. In particular, million-atom molecular dynamics
simulations captured the spontaneous evolution of anisotropy in a solid nu-
cleus in an undercooled melt and homogeneous nucleation without any in-
ducing factor, which is followed by grain growth. At the microstructural level,
the quantitative phase-field model has been gaining importance as a powerful
tool for predicting solidification microstructures. In this paper, the conver-
gence behavior of simulation results obtained with this model is discussed, in
detail. Such convergence ensures the reliability of results of phase-field
simulations. Using the quantitative phase-field model, the competitive growth
of dendrite assemblages during the directional solidification of a binary alloy
bicrystal at the millimeter scale is examined by performing two- and three-
dimensional large-scale simulations by multi-GPU computation on the
supercomputer, TSUBAME2.5. This cutting-edge approach using a GPU
supercomputer is opening a new phase in computational metallurgy.

INTRODUCTION

Many practical metals and alloys undergo so-
lidification during their production.1,2 Since their
microstructure directly affects the properties of
products, it is essential to control the microstruc-
ture of metals and alloys during the solidification
with a high degree of accuracy. Despite considerable
effort over many years, it is still challenging to
control the solidification microstructure as planned.
This is mainly due to the following three reasons:

(1) The difficulty of direct (in situ) observation.
(2) The wide range of temporal and spatial scales.
(3) The need to consider multiple physics including

fluid flow, thermal and solute diffusion.

Regarding the first difficulty, several pioneering
works have achieved the in situ observation of
solidification for transparent materials3,4 and for

alloys by using synchrotron radiation x-rays.5–7

These studies provided considerable information on
dendrite growth. However, it is not yet straightfor-
ward to directly observe the dynamics of solidifica-
tion during actual production processes in general.
Therefore, computational studies have contributed
to clarifying the nature of solidification processes. In
the early stage of research, Monte Carlo simulations
with the Pott model8 were often performed to study
the kinetics of grain growth,9,10 and this became a
popular method for the study of solidification, re-
crystallization and other phenomena.11,12 The front
tracking method13,14 and cellular automata15,16

have also been widely employed for simulations of
dendritic growth. In 1993, Kobayashi succeeded in
reproducing a complicated dendrite structure using
the phase-field model.17 Since then, phase-field
simulation18–23 has become a major tool for the
simulation of solidification. The main advantage of
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the phase-field model is that it is not necessary to
explicitly track the position of a sharp interface in
complex microstructural patterns. On the other
hand, a long-standing issue regarding a quantita-
tive aspect of the phase-field model remained un-
resolved until recently. This serious problem has
been resolved by recent progress in the quantitative
phase-field model.24–33 Combined with the recent
rapid progress in high-performance computational
environments, large-scale phase-field simulations
can now capture the competition between bundles of
dendrites, including selection and regularity,34–36

which is filling the gaps in knowledge over a wide
range of temporal and spatial scales. Moreover, the
coupling of phase-field simulation with computa-
tional fluid dynamics is now capturing some aspects
of multiple physics during solidification,37,38 which
can be applied to fluid-dynamics-based phenomena
such as the fragmentation of dendrite tips during
solidification.38 The Lattice Boltzmann method39,40

is a promising numerical method for a large-scale
fluid computation in solidification problem.

In combination with phase-field simulations, mo-
lecular dynamics simulations have contributed to
the estimation of interfacial parameters such as the
solid–liquid interfacial energy and the kinetic coef-
ficient.41–49 In particular, the anisotropy in the in-
terfacial parameters is a key factor determining the
morphology of dendrite structures, although there
are few reliable experimental values for the degree
of anisotropy in the interfacial parameters. There-
fore, an important role of molecular dynamics
simulations is to provide interfacial parameters es-
timated from atomic-scale information for use in
mesoscale simulations, which is a basic concept of
multiscale modeling. Moreover, recent large-scale
molecular dynamics simulations have captured the
morphological dynamics of crystal growth with
curved interfaces50–52 and multiple nucleation from
an undercooled melt, which is followed by the for-
mation of polycrystalline microstructures.53,54

Such progress in simulations of solidification is
largely attributable to the rapid progress in high-
performance computational environments. In par-
ticular, considerable benefit has been obtained from
the high parallel efficiency of graphics processing
units (GPUs). Large-scale simulations performed on
GPU supercomputers have ranged from the nucle-
ation and subsequent grain growth in a million-
atom molecular dynamics simulation to the com-
petitive growth of millimeter-size dendrite assem-
blages in a large-scale phase-field simulation. In
this paper, cutting-edge simulations of solidification
performed on a GPU supercomputer are introduced
with a brief introduction to the current state of
computational studies on solidification. Firstly, the
spontaneous evolution of anisotropy in a solid
nucleus investigated by million-atom molecular
dynamics simulation is discussed in ‘‘Solidification
in Large-Scale Molecular Dynamics Simulation’’
section. Investigation of the nucleation of crystal

nuclei from an undercooled melt, which is an initial
stage of solidification, is also outlined in the same
section. In ‘‘Advances in Quantitative Computation
of Solidification Microstructures’’ section, advances
in quantitative computation of phase-field simula-
tions are discussed with an examination of the
convergence of the results of quantitative phase-
field simulations. In ‘‘Large-Scale Phase-Field
Simulation of Competitive Growth of Dendrite
Assemblages’’ section, we report the competitive
growth of dendrite assemblages during the direc-
tional solidification of a binary alloy bicrystal in-
vestigated by performing two- and three-
dimensional large-scale simulations using the
quantitative phase-field model by multi-GPU com-
putation. We conclude with a discussion of the
implications of these results for the future of com-
putational metallurgy.

SOLIDIFICATION IN LARGE-SCALE
MOLECULAR DYNAMICS SIMULATION

Spontaneous Evolution of Anisotropy in a So-
lid Nucleus

As described above, molecular dynamics simula-
tions have contributed to the estimation of interfa-
cial properties. The estimated values of these
properties in representative papers41–49 are sum-
marized in Table I. As can be seen in the table, the
kinetic coefficient of the bcc h100i orientation is
slightly higher than those of the h110i and h100i
orientations in general. Such a difference in the
kinetic coefficient as well as that in the interfacial
energy causes anisotropy in the solid nucleus, which
results in dendritic growth in accordance with the
interfacial stability. Therefore, it is reasonable for
an anisotropic morphology to be generated during
solidification in a phase-field simulation when the
effect of anisotropy is taken into account in the in-
terfacial parameters. In turn, it should be possible
in principle to achieve an anisotropic morphology
even in a molecular dynamics simulation if the
system size is sufficiently large. Then, what is the
critical size for obtaining clear anisotropy in a solid
nucleus in an atomic-scale simulation? At least we
did not observe such anisotropy in a solid nucleus
during solidification in a cubic cell of side
15 nm.46,55 Therefore, a much larger system should
be employed to discuss this issue, which is, however,
computationally demanding.

We have developed our own code for carrying out
large-scale molecular dynamics simulations by sin-
gle-GPU computing, which enables molecular dy-
namics simulations of 1 million atoms to be handled
over a period of nanoseconds with a computational
time of several days.56 Using this code with single-
GPU computing, the spontaneous evolution of ani-
sotropy in a solid nucleus during the solidification of
iron was investigated by million-atom molecular
dynamics simulation.52 As the simulation method-
ology, the Finnis–Sinclair potential,57 which is one
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of the established potentials for bcc metals, was
employed for the interaction between iron atoms. A
leapfrog method was used to integrate a classical
equation of motion with a time step of 5.0 fs. A
Berendsen thermostat58 was applied to control the
temperature. The Andersen method59 was employed
to control the pressure in each direction indepen-
dently. The initial configuration was prepared by
embedding an octagonal solid nucleus in an iron
melt. The iron melt was obtained in advance by
heating a bcc crystal of iron of size
53.4 9 53.4 9 4.3 nm3 (1,037,880 atoms) at 3500 K
under a NVT constant condition. The solid nucleus
was prepared as an octagonal cutout from the bcc
crystal with four {100} facets and four {110} facets of
side 1.78 nm. The solid nucleus was inserted into
the center of the iron melt, while omitting all melt
atoms located within 2.5 Å from solid atoms. After
the quenching of the simulation cell at 10 K for
25 ps to fill the gap between the melt and solid
atoms, the obtained initial configuration was
isothermally undercooled at DT = 300 K. Note that
the melting point of bcc Fe according to the Finnis–
Sinclair potential is 2400 K,60 and therefore the
undercooling temperature of 300 K corresponds to
2100 K.

Figure 1 shows snapshots of the atomic con-
figuration during the spontaneous evolution of ani-
sotropy in the solid nucleus during solidification.52

Although the edges of the octagonal nucleus are
smoothed and the nucleus takes a spherical shape
in the initial stage, the spherical nucleus gradually
preferentially grows in the h100i direction from
approximately 300 ps. Then, it grows to form a
rhombic-like structure with fourfold symmetry at
500 ps. The shape of the solid–liquid interface in the

snapshot at 500 ps is traced and extracted with re-
spect to the rotation angle h from the x-axis. In the
figure showing the extracted information, the ra-
dius normalized by the average radius of 19.87 nm
is plotted. It was confirmed that there are prefer-
ential growth directions at rotation angles of 0�, 90�,
180� and 270�, which correspond to the h100i
direction. This is in agreement with the information

Table I. Thermodynamic and kinetic parameters estimated from molecular dynamics simulations41–49

Element (potential) TM (K) DH (eV/atom) rSL (mJ/m2) lh100i (cm/sK) lh110i (cm/sK) lh111i (cm/sK)

Fe(bcc) (FS)a 2400 ± 10 [1811.0] 0.22 [0.143] 170 30.5 25.7 –
Fe(bcc) (ABCH)b 2358.7 ± 4.0 0.218 206 ± 10 32.5 ± 1.6 24.6 ± 1.4 25.6 ± 2.0
Fe(bcc) (MH(SA))b 1772.0 ± 2.0 0.162 175 ± 11 45.8 ± 3.8 33.5 ± 1.0 31.8 ± 1.8
Fe(bcc) (pair)b 2311.8 ± 3.0 0.259 221 ± 14 30.8 ± 7.0 22.6 ± 4.0 23.1 ± 3.6
Fe(bcc) (MEAM)c 1807 0.134 184 ± 14 – – –
Fe(fcc) (ABCH)b 2251.0 ± 6.0 0.200 319 ± 12 24.0 ± 1.6 19.3 ± 2.2 –
Fe(fcc) (pair)b 2202.0 ± 7.0 0.212 311 ± 14 – – –
Ni (SMF)d 1820 [1726] 0.187 [0.1776] 310 ± 7 – – –
Ni (FBD)e,f 1714 0.179 284.7 ± 7.0 45 32 18
Ni (SC)g 1205 0.11 256 – – –
Ni (MEAM)h 1741.6 0.23 331.8
Cu (FBD)e,f 1279 [1356.6] 0.116 [0.135] 195.7 ± 5.6 46 27 19
Cu (MEAM)h 1319.6 0.15 255.0 – – –
Al (EA)i 930 [933.5] 0.101 [0.109] 149 – – –
Al (MEAM)h 924.9 0.12 172.6
Cr (SC)g 2232 [2180] 0.16 [0.22] 304 – – –

TM, DH, rSL and l represent the melting point, latent heat, solid–liquid interfacial energy and kinetic coefficient (the subscript shows the
orientation), respectively. Experimental values are listed in parenthesesaWatanabe et al.46bSun et al.45cAsadi et al.48dAsta et al.42eHoyt
et al.41fHoyt et al.44gHashimoto et al.47hAsadi et al.49iMorris43.

Fig. 1. Million-atom molecular dynamics simulation of spontaneous
evolution of anisotropy in solid nucleus during solidification.52 Re-
sults from Ref. 52 are reconstructed. (Top) Snapshots at 100, 300
and 500 ps and the trace of the solid–liquid interface obtained from
the snapshot at 500 ps. (Bottom) Normalized radius of the solid
nucleus as a function of rotation angle h.
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in Table I, in which the kinetic coefficient of the
h100i direction is larger than that of the h110i di-
rection. The spontaneous evolution of anisotropy in
a solid nucleus during solidification was achieved
for the first time with the aid of the high processing
ability of the GPU architecture.

Homogeneous Nucleation and Subsequent
Grain Growth

One of the remaining issues in the simulation of
solidification is how to treat the nucleation.54 In
existing phase-field simulations, the nuclei in the
melt are given in advance with a random distribu-
tion or are formed forcibly on the basis of classical
nucleation theory. On the other hand, it is possible
in principle to achieve nucleation in molecular dy-
namics simulations when suitable conditions are
given. For example, nucleation in a nanoscale liquid
droplet has been achieved with relative ease under
continuous cooling,61,62 which has been widely ex-
amined to study the size dependence of the melting
point of metal nanoparticles.61–66 However, gener-
ally, it is not yet straightforward to achieve multiple
nucleation, which is essential for the formation of
polycrystalline microstructures, since a broad range
of temporal and spatial scales is required. There-
fore, multiple nucleation in a large-scale system is
usually achieved with the aid of inducing factors
such as a high pressure53 and surface fluctuation.67

We successfully achieved spontaneous nucleation
from an undercooled iron melt without any inducing
factor in a million-atom molecular dynamics
simulation on a GPU supercomputer using the code
described in the previous subsection. The simula-
tion methodology basically followed the simulation
in the previous subsection. Firstly, a bcc crystal of
iron with a size of 53.4 9 53.4 9 4.3 nm3 (1,037,880
atoms) was heated at 3500 K under a NVT (number
of atoms, volume and temperature) constant condi-
tion to obtain an iron melt as the initial configura-
tion. The prepared initial configuration was
isothermally undercooled at DT = 1000 K for
10,000 ps under zero pressure by a NPT (number of
atoms, pressure and temperature) constant condi-
tion. The Finnis–Sinclair potential57 was employed
for the interaction between iron atoms as in the
above simulation. The periodic boundary condition
was employed for all boundaries. Figure 2 shows
snapshots of the atomic configuration during a
consecutive simulation of nucleation, solidification
and grain growth. Many nuclei are simultaneously
nucleated before 150 ps and grow to form spherical
grains in the melt. Other nuclei are continuously
nucleated from the remaining melt. Later-nucleated
grains fill the spaces between earlier-nucleated
grains, and all the iron melt has solidified by 300 ps.
After the solidification, the small grains gradually
shrink and disappear whereas the large ones be-
come larger, which is regarded as grain coarsening.
Since the existence of grain boundaries yields excess

grain boundary energy (approximately 0.5 J/m2 to
2.0 J/m260), such grain growth occurs in order to
decrease the area of grain boundaries. It was also
confirmed from the molecular dynamics simulation
that the rate of grain coarsening is one order of
magnitude slower than that of the solidification.

The incubation time until the first nucleation and
the number of nuclei drastically change when the
undercooling temperature is varied. It was con-
firmed that the incubation time as a function of
temperature has a peak (i.e., nose shape) at the
critical temperature, which is a characteristic shape
of the time–temperature–transformation (TTT)
curve.54 Therefore, it is considered that the nucle-
ation observed in Fig. 2 is entirely thermally acti-
vated without any other inducing factor. The
thermally activated nucleation in the million-atom
molecular dynamics simulation has been investi-
gated in detail elsewhere.54

ADVANCES IN QUANTITATIVE
COMPUTATION OF SOLIDIFICATION

MICROSTRUCTURES

Quantitative Phase-Field Model

As seen above, recent atomic-scale simulations
can capture the scale of microstructure evolution.
On the other hand, the description and prediction of
microstructural evolution during solidification have
generally been theoretically and numerically tack-
led within the framework of a free-boundary prob-
lem, the underlying physics of which are solutal and
thermal diffusion in the bulk, mass and energy
conservation laws at the interface and the Gibbs–
Thomson effects. One of the central issues in mod-
eling microstructural processes is therefore the
precise description of the interface dynamics con-
sistent with the free-boundary problem. The phase-
field model has emerged as a powerful tool for de-
scribing the microstructural evolution process-
es.18–23 This is a diffuse interface approach, in
which the interface is not sharp but diffuse, ex-
hibiting non-zero thickness. The main advantage of
this model is that it is not necessary to explicitly
track the position of a sharp interface in complex
microstructural patterns. The phase-field model has
been applied to a variety of solidification process-
es,18–22 and its capability of affording a qualitative
understanding of phenomena has generally been
acknowledged. Despite this success, however, a
long-standing issue regarding the quantitative as-
pect of the phase-field model remained unresolved
until recently.

Phase-field models were developed in early works
to reproduce the free-boundary problem of interest
in the so-called sharp-interface limit, where the
thickness of the diffuse interface W approaches zero.
However, in practice, a prerequisite for this diffuse
interface approach is to assign a finite value to W. A
realistic value of W for the solid–liquid interface is
typically a few nm; thus, a spatial resolution of Å
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order is required to describe a diffuse interface
having a realistic thickness. This high spatial
resolution limits the system size to extremely small,
making it impossible to deal with problems at the
microstructural scale. Therefore, W has to be in-
creased by orders of magnitude from the realistic
thickness. However, this increment, in turn, causes
the unrealistic magnification of some physical ef-
fects associated with the diffuse interface, which
precludes the quantitative computation of solidifi-
cation microstructures.

This serious problem was resolved by Karma and
Rappel.24,25 They put forward a model based on a
new procedure called the thin-interface limit, in
which W is taken to be smaller than any physical
length appearing at the microstructural scale but
much larger than the realistic thickness. This model
is called the quantitative phase-field model since it
enables quantitatively meaningful simulations.25

This model was later extended to deal with alloy
solidification in a dilute binary alloy with zero dif-
fusivity in the solid (one-sided model).26,27 More-
over, the quantitative phase-field model has been
developed to describe two-phase solidification in
binary alloys with zero diffusivity in the solids (one-
sided model),28 alloy solidification with coupled heat
and solute diffusion in dilute binary alloys having
zero solutal diffusivity in the solid and equal ther-
mal diffusivities in the solid and liquid (one-sided
solute transport and symmetric heat transport),29

and isothermal solidification in multicomponent al-
loys with zero diffusivities in the solid (one-sided
model).30 In addition, one of the present authors has
recently developed quantitative phase-field models
for the two-sided case. To be more specific, the
models were developed for isothermal single-phase
solidification,31 two-phase solidification in dilute
binary alloys with an arbitrary value of the solid
diffusivity,32 and single-phase solidification in
multicomponent alloys with coupled solutal and
thermal diffusion.33 These two-sided models enable
us to describe the equilibrium solidification, the
microsegregation, the motion of the solid–solid in-
terface, and the solidification processes in practical
alloy systems such as carbon steels, where the dif-

fusion in the solid is not negligible. Quantitative
phase-field models are being increasingly utilized
for quantitative simulations of solidification phe-
nomena.34,36,68–81

As mentioned above, significant progress has
been made in quantitative phase-field modeling for
alloy solidification. The accuracy of quantitative
phase-field simulations is evaluated by observing
the convergence behavior of the simulation results
with decreasing W. It has been demonstrated that
the convergence of the results in quantitative
phase-field simulations is much faster than that of
the results in the conventional phase-field mod-
el,31–33 which indicates that accurate results can be
obtained using a large value for W in quantitative
phase-field models. This is quite advantageous in
terms of the computational cost because the com-
putational time for a three-dimensional simulation
using a finite difference method is proportional to
W�5.69 Hence, the quantitative phase-field model
enables highly accurate and large-scale computa-
tions of solidification microstructures. However, it
should be pointed out that the value of W required
to obtain well-converged results is strongly depen-
dent on the solidification condition of interest. No
criterion has yet been established regarding a suit-
able choice of W, and a convergence test is generally
required for each solidification condition to ensure
accurate and efficient computations. Therefore, it is
desirable to obtain information to reduce the effort
involved in the convergence test. This point is ad-
dressed below.

Convergence of Outcome in Quantitative
Phase-Field Simulation

We have carried out quantitative phase-field
simulations of the directional solidification of Al-2-
mass%Cu alloy in a two-dimensional system to gain
some insight into the convergence behavior. The
competitive growth of solids was analyzed by con-
sidering a single solid growing in the y-direction
with the periodic boundary condition applied in the
x-direction. The details of time evolution equations
can be found in Ref. 36. The input parameters used

Fig. 2. Consecutive molecular dynamics simulation of nucleation, solidification and grain growth. An iron melt consisting of 1,037,880 atoms in a
cell of 53.4 9 53.4 9 4.3 nm3 was isothermally undercooled at DT = 1000 K over 10,000 ps. Purple and white atoms represent iron atoms with
and without the bcc configuration, respectively.
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in this study are listed in Table II. A temperature
gradient and an initial undercooling were set to
G = 1000 K/m and u0 = (cl � c0)/[(1 � k)c0] = �1,
respectively, where cl is the concentration in the
liquid phase, c0 is the average concentration, and k
is the partition coefficient. We started with initial
seeds periodically spaced by the targeted spacing.
This spacing corresponds to the primary arm spac-
ing k and it was set to about 150 lm. By performing
a moving frame simulation, we obtained steady-s-
tate values of tip undercooling, given by X = 1 � ytip/
lT, where ytip is the position of the dendrite tip and
lT is the thermal diffusion length, and the curvature
radius of the dendrite tip q.

The calculated results for V = 500 and 50 lm/s
are shown in Fig. 3a and b, respectively. The
horizontal axis is the interface thickness normalized
by the chemical capillary length d0. In each case, W
and q fully converge with unique values when W is
small, which indicates excellent convergence be-
havior. However, the value of W required for the
convergence strongly depends on the pulling ve-
locity, V. The convergence for V = 500 and 50 lm/s
starts to break down when W/d0< 60 and 200, re-
spectively. This large difference in the convergence
behavior indicates that the effort required to find a
suitable value of W strongly depends on the so-
lidification condition of interest. One may suppose
that the breakdown of convergence should be re-
lated to the onset of the unphysical magnification of
the interface effects that always exists in conven-
tional phase-field models constructed in the sharp-
interface limit as described in the previous section.

According to Fig. 3a and b, the converged value of
q is strongly dependent on the pulling velocity.
Hereafter, the values of X and q calculated for the
smallest value of W are regarded as the converged
values and are, respectively, denoted by Xc and qc.
In Fig. 3, the values of qc/d0 for V = 500 and 50 lm/s
are about 300 and 1000, respectively. Hence, from
the comparison between Fig. 3a and b, one may
speculate that the convergence of the simulation for
a relatively coarse structure starts to break down at
a relatively large W. We investigated the validity of
this speculation in a quantitative manner. All the
data shown in Fig. 3a and b are plotted in Fig. 3c,
where q and X are normalized by qc and Xc, re-

spectively, on the y-axis and W is normalized by qc

on the x-axis. It can be seen that the convergence
starts to break down when W/qc � 0.2 in both cases.
In other words, regardless of the solidification con-
dition, the results fully converge as long as W/
qc £ 0.2. This is also supported by the results for the
directional solidification of an impure succinonitrile
alloy in Ref. 27.

Note that the steady-state profile of the phase-
field in our model is given by / = tanh[r/(21/2W)].
Here, / is the phase-field, which takes a value of +1
(�1) in the solid (liquid) and continuously changes
from -1 to +1 inside the interface, and r is the spatial
coordinate in the direction normal to the interface.
This solution is obtained for the boundary condition
/ = ±1 at r fi ±1. In this model, the interface
thickness cannot be well defined. In the above dis-
cussion, W was used as a measure of the interface
thickness and is actually the length of the region for
�0.34< /< 0.34. When the region for �0.95< /
< 0.95 is considered, the thickness of this region W¢
is about 5 W. Hence, the condition W/qc £ 0.2 cor-
responds to W¢ £ qc. Within the framework of the
diffuse interface approach, an accurate description
of the size and morphology of microstructures is not
possible when the interface thickness is set to larger
than the minimum curvature radius of the interface
appearing in the microstructure. The condition
W¢ £ qc should originate from this fact. Namely, the
breakdown of the convergence shown in Fig. 3c is
not triggered by the onset of the unphysical mag-
nification of interface effects and is actually a nat-
ural consequence of the limitation unique to the
diffuse interface approach.

To provide evidence for this, data for free den-
dritic growth reported in the literature31,32 are
plotted in Fig. 4 in the same manner as in Fig. 3c.
Six sets of data are distinguished by symbols with
different shapes. For each dataset, the open and
filled symbols represent V/Vc and q/qc, respectively.
Here, V is the steady-state value of moving velocity
of dendrite tip and Vc is the converged one, viz.,
the value calculated for the smallest value of W.
Datasets A and B are the results for isothermal
solidification in binary alloys (Figs. 4 and 5 in
Ref. 31). Datasets C and D are those for non-
isothermal solidification in a binary alloy without
and with diffusion in the solid (Figs. 2 and 3 in
Ref. 32) and datasets E and F are the results for
isothermal and non-isothermal solidification in a
ternary alloy (Figs. 4 and 5 in Ref. 32), respec-
tively. Importantly, all the data converge as long
as W/qc £ 0.2. Hence, the condition W/qc £ 0.2 holds
true in both directional and free dendritic growth.
This fact will reduce the effort involved in con-
vergence tests. Once the minimum curvature ra-
dius, qc, of the growing phase(s) appearing during
a microstructural evolution process is obtained
from preliminary simulations, accurate and effi-
cient computation can be conducted by assigning a
value of about 0.2 qc to W.

Table II. Input parameters employed in quantita-
tive phase-field simulations for directional
solidification of an Al-2mass%Cu alloy36

Melting temperature of pure Al (Tm) 933.25 K
Liquidus slope (m) –620 (K/at. frac.)
Partition coefficient (k) 0.14
Gibbs–Thomson coefficient (C) 2.4 9 10�7 (K m)
Strength of anisotropy of
solid–liquid interface (e)

0.02

Liquid diffusivity (Dl) 3 9 10�9 (m2/s)
Solid diffusivity (Ds) 2 9 10�12 (m2/s)

Shibuta, Ohno, and Takaki1798



LARGE-SCALE PHASE-FIELD SIMULATION
OF COMPETITIVE GROWTH OF DENDRITE

ASSEMBLAGES

High-Performance Computation for the
Phase-Field Method

The development of the quantitative phase-field
model enables the use of a large interface thickness
W or a large computational lattice. However, as
shown in the previous section, the value of W is
restricted by the curvature of the dendrite tip q.
Therefore, dendrite growth simulations using the
phase-field method have been limited to two-di-
mensional problems or three-dimensional simula-

tions of a small number of dendrites. Actually, many
solidification structures are formed through the in-
teractions during the competitive growth of den-
drite assemblages.1,2 Although the cellular
automaton method has been widely used for poly-
crystal solidification simulations,15,16,82 and has
been employed for large-scale solidification simula-
tions,83,84 multiple-dendrite-growth simulation by
the phase-field method is crucial for accurate pre-
diction of the solidification microstructure. An
adaptive mesh refinement technique, in which fine
meshes are used only around the interface,85–89 can
reduce the computational cost. However, its appli-
cability to polycrystal solidification with a large in-
terface area fraction is not flexible. Moreover, the
development of the code for adaptive mesh refine-
ment requires tremendous effort.

Under such circumstances, GPU computation has
attracted the attention of many phase-field re-
searchers because GPUs have been successfully
used to increase the speed of phase-field computa-
tion.33,90 Moreover, parallel computation using
multiple GPUs has the potential to capture realistic
dendrite assemblages.22,35,91,92 Shimokawabe et al.
achieved the first-ever petascale phase-field
simulation of dendrite growth using 4000 GPUs on
the TSUBAME2.0 supercomputer at the Tokyo In-
stitute of Technology.92 Subsequently, the present
authors and coworkers successfully performed a
very-large-scale simulation of multiple dendritic
competitive growth using 40003 meshes.35

From the viewpoint of applications, understand-
ing of the competitive growth of dendrite assem-
blages is essential to improve and control
solidification microstructures. It is widely accepted
that dendrites whose h100i preferential growth di-
rection is almost parallel to the heat flow direction
can continue to grow by stopping the growth of

Fig. 3. Convergence behavior of degree of undercooling and curvature radius of the dendrite tip during directional dendritic growth in Al-
2mass%Cu alloy calculated for (a) V = 500 and (b) 50 lm/s. (c) Convergence behavior plotted on normalized axes.

Fig. 4. Convergence behavior of velocity (open symbols) and cur-
vature radius (filled symbols) of the dendrite tip during free dendritic
growth in binary (A, B, C, D) and ternary (E, F) alloys. Details of
datasets A–F can be found in the text.
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dendrites having a h100i crystallographic orienta-
tion that deviates from the heat flow direc-
tion.16,93,94 On the other hand, unusual dendrite
selections, in which inclined dendrites overgrow
dendrites growing in the heat flow direction, have

recently been observed in the unidirectional so-
lidification of a bicrystal sample.95,96 To clarify the
mechanism of this unusual overgrowth, two-di-
mensional phase-field simulations have been per-
formed.34,36,90 In the following subsections, we

Fig. 5. Two-dimensional simulation of competitive growth of Al-3mass%Cu binary alloy bicrystal with V = 100 lm/s and G = 10 K/mm. The
domain size was set to 3.072 9 1.152 mm2 (4096 9 1536 meshes) and the time step was Dt = 3.75 9 10�5 s. Zero Neumann boundary
conditions for / and u were set for all boundaries.
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report the competitive growth of dendrite assem-
blages investigated by two- and three-dimensional
simulations using the quantitative phase-field
model, which were performed on multiple GPUs.

Two-Dimensional Simulation of Competitive
Growth

Figure 5 shows snapshots from a two-dimensional
simulation of competitive dendrite growth during
the directional solidification of a binary alloy
bicrystal. The quantitative phase-field model for the
solidification of a dilute binary alloy31 was used with
the moving frame algorithm for directional solidifi-
cation under a constant temperature gradient, G.
The computational conditions were same as in Ref.
36 except for a computational domain of
3.072 9 1.152 mm2 (4096 9 1536 meshes) and 20
million computational steps (750 s) performed for
Al-3mass%Cu with V = 100 lm/s and G = 10 K/mm.
The computation was performed within 1 day using
eight GPUs. Two seeds were placed at the two bot-
tom corners of the computational domain, where the
left seed was the favorably oriented (FO) grain and
the right seed was the unfavorably oriented (UO)
grain with its h100i crystallographic orientation at
angle of 10º from the heat flow direction. As shown
in Fig. 5a, the solids cover the bottom surface and
the dendrites grow in the heat flow direction. A
grain boundary (GB) is formed at the collision point
between the two grains, as shown in Fig. 5b, and
steady-state competitive growth between the GB
dendrites starts from 8 9 105 steps (Fig. 5c). Here,
FO and UO dendrites are labeled using ‘‘F’’ and ‘‘U’’,
respectively. At the GB, some UO dendrites are
blocked by the FO dendrite, and then the UO den-
drite overgrows the FO dendrite after the blocking.
Finally, all the FO dendrites are overgrown after
about 18 million steps. To overgrow the FO den-
drites labeled F1–F7, 3, 3, 3, 3, 8, 9 and 1 UO den-
drites are required, respectively. This means that,
for example, the F1 dendrite blocks the growth of
the U1 and U2 dendrites and is overgrown by the
U3 dendrite, and the F2 dendrite blocks the U3 and
U4 dendrites and is overgrown by the U5 dendrite.
This difference is mainly caused by the difference in
the dendrite arm spacing between the GB FO den-

drite and the FO dendrite at its immediate left. As
shown in Fig. 5c, the arm spacing of F5–F6
(197 lm) and F6-F7 (324 lm) is the largest com-
pared to F1–F2 (175 lm), F2–F3 (161 lm), F3–F4
(182 lm), and F4–F5 (179 lm). In addition, the UO
dendrite arm spacing also affects the overgrowth of
FO dendrites. The F4 dendrite is overgrown by the
U9 dendrite. The average UO dendrite arm spacing
shown in Fig. 5c, or U1–U7, is 199 lm. On the other
hand, the average UO dendrite arm spacing shown
in Fig. 5d, or U10–U16, is 296 lm. Thus, the large
difference in the number of UO dendrites needed to
overgrow the FO dendrite is caused by both spacing
of FO dendrites and UO dendrites. As shown in
Fig. 5d, when the U9 dendrite approaches the F4
dendrite, both GB dendrites fall down and the F4
dendrite moves to the left. When the spacing be-
tween F4 and F5 reaches the minimum value in
which the two dendrites can coexist,36 the F4 den-
drite is overgrown by the U9 dendrite. Accordingly,
the horizontal migration of the FO dendrite when
the UO dendrite approaches to the FO dendrite is a
key process in the unusual selection. The unusual
overgrowth observed in the present simulation oc-
curs less readily with increasing inclination angle of
the UO dendrites90 and pulling velocity34 due to the
reduced the solute interaction around the tips of the
GB dendrites.

Three-Dimensional Simulation of Competitive
Growth

As introduced in the previous section, the basic
mechanism of the unusual dendrite selection can be
investigated by two-dimensional simulation. How-
ever, actual dendrite growth occurs in three-di-
mensional space and the competition between
dendrites at GBs is more complicated.97,98 Figure 6
shows the snapshots from a three-dimensional
simulation of competitive dendrite growth during
the directional solidification of a binary alloy
bicrystal. The computational domain was set to
1.536 9 1.536 9 1.024 mm3 (1536 9 1536 9 1024
meshes) and a computation of 0.5 million steps
(23.7 s) was performed. Except for the lattice size of
Dx = 1 lm and the inclination angle of UO grain of
20�, the computational conditions were the same as

Fig. 6. Three-dimensional simulation of competitive growth of Al-3mass%Cu binary alloy bicrystal with V = 100 lm/s and G = 10 K/mm. The
domain size was set to 1.536 9 1.536 9 1.024 mm3 (1536 9 1536 9 1024 meshes) and the time step was Dt = 4.74 9 10�5 s. Zero Neumann
boundary conditions for / and u were set for all boundaries. The sky blue and yellow grains are the favorably and unfavorably oriented grains,
respectively.
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in the previous two-dimensional simulation. It took
about half a day for this simulation to be performed
using 512 GPUs of the TSUBAME2.5 supercom-
puter at Tokyo Institute of Technology, which is a
practical computational time. At the beginning of
the computation, as shown in Fig. 6a, the two grains
spread along the bottom surface to form a fanlike
shape, and many secondary arms grow in the heat
flow direction. Figure 6b show that the two grains
collide and a straight GB is formed because of the
high density of arms. Dendrite selection subse-
quently occurs and the number of dendrites de-
creases as shown in Fig. 6c and d. Because the
inclined dendrites grow in the h100i direction with
increasing arm spacing,99–102 the UO dendrites
move toward the FO dendrites. As a result, the
competition between dendrites becomes intense at
the GB, and the shape of the GB becomes zigzag as
shown in Fig. 6e. This zigzag GB is very similar to
that observed experimentally.97,98

Here, we showed the very beginning stage of
competitive growth. By continuing this simulation
longer, we will be able to observe the detail compe-
tition between FO and UO dendrites in three-di-
mensional space in detail. In three-dimensional
space, because the solute diffusion is possible in the
three directions, we need a longer computational
time than for the two-dimensional problem to see
the unusual overgrowth phenomenon. Therefore,
this is challenging topic even using a supercom-
puter. Nevertheless, the results will be available in
the near future.

CONCLUSION

Utilizing the high parallel efficiency of GPUs,
cutting-edge simulations were performed to capture

the nature of solidification from various viewpoints.
From an atomic viewpoint, a million-atom mole-
cular dynamics simulation revealed the sponta-
neous evolution of anisotropy in a solid nucleus
embedded in an undercooled iron melt, in which
fourfold symmetry was achieved naturally without
the use of any empirical parameters. Homogeneous
nucleation from an undercooled melt was achieved
by another million-atom molecular dynamics
simulation, in which multiple nuclei solidified to
form a multigrain microstructure and grain coars-
ening occurred during 10 ns, according to the re-
sults of the calculation. Moreover, the convergence
behavior in quantitative phase-field simulations
has been discussed in detail. Such convergence
enables the use of a large interface thickness in
quantitative phase-field simulations. Using the
quantitative phase-field model for the solidification
of a dilute binary alloy, the competitive growth of
dendrite assemblages during the directional so-
lidification of a binary alloy bicrystal in a millime-
ter scale was examined by performing two- and
three-dimensional large-scale simulations by multi-
GPU computation. From the two-dimensional
simulation, the mechanism of the unusual over-
growth phenomenon, in which dendrites inclined to
the heat flow direction overgrow those growing in
the heat flow direction during unidirectional so-
lidification, was clarified. On the other hand, a
zigzag grain boundary was formed during the
competition between favorably and unfavorably
oriented dendrites in the three-dimensional phase-
field simulation.

In summary, many topics remain to be investi-
gated in solidification science and other fields of
metallurgy. We believe that large-scale simulations
are powerful tools for their investigation and should
bring about significant changes in computational
metallurgy. Although results from molecular dy-
namics and phase-field simulations in this paper are
not directly linked but so far independent, further
large-scale molecular simulation will enable a direct
comparison with the phase-field and other me-
soscale simulations. Moreover, the statistical sam-
pling of nucleation in the large-scale molecular
dynamics simulation can export the proper infor-
mation of nucleation event to the phase-field
simulation in the near future. Finally, we celebrate
the beginning of a new phase of computational
metallurgy with the impressive snapshot in Fig. 7,
which was obtained from a very-large-scale three-
dimensional phase-field simulation of the direc-
tional solidification of a binary alloy polycrystal.35

The calculation was carried out in a system with
dimensions of 3.072 9 3.072 9 3.072 mm3

(4096 9 4096 9 4096 meshes) for a total time period
of more than 100 s (4 million computational steps)
using 768 GPUs with 768 CPUs on the TSU-
BAME2.0, which is the largest simulation of den-
drite growth ever to be reported to the best of our
knowledge.

Fig. 7. Snapshot from a very-large-scale three-dimensional phase-
field simulation of the directional solidification of a binary alloy
polycrystal.35 The calculation were carried out in a system with di-
mensions of 3.072 9 3.072 9 3.072 mm3 (4096 9 4096 9 4096
meshes) for a total time period of more than 100 s (4 million com-
putational steps) using 768 GPUs with 768 CPUs on TSUBAME2.0.
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